Plutonium-Pit Production in the 21st Century

Salient features of DPAG study - prepared for LSPF workshop on March 21, 2000

Linda Branstetter, SNL

Study Performance and Requirements

- Study performed 2/98 - 11/98
 - sponsored by DOE/AL (Earl Whiteman)
 - concluded that a LSPF is needed
 - limited capacity at LANL not adequate over long-term

- Top-Level Requirements
 - DEVELOPED OUR OWN - DPAG's task was to look at a continuum of possible futures. Within that continuum, the study team chose a realistic "base case" for purposes of illustration:
 - baseline production nominally 150 WR-pits/yr, but up to 225 WR-pits/yr (single shift); total capacity (baseline + contingency) up to 450 WR-pits/yr (2 shifts)
 - total capacity selected based on realistic stockpile future, realistic contingency and augmentation requirements, practical operational constraints for pit fabrication facility, current stockpile age, and potential pit lifetimes
 - 40 hr. work week / 3 hrs. per shift / 5 shifts per week / 40 weeks per year
 - balance of year used for major maintenance, inventory, & vacation shutdown
 - sprint (3rd shift) production not considered realistic
 - unsustainable
Assumptions

- revert to active-only stockpile
- B83 ignored
- fabrication modeling assumed casting technology (not wrought)
- all pits have same yield lifetime
 • W82 age ignored in considering production need dates
- all pits have same fabrication difficulty
 • modeling based on production of bonded pits
- Pu feedstock assumed available as strategic reserve pits (GFE)
- non-Pu pit components assumed GFE
- facility designed to allow completion of contingency production within 3-5 years after identification of need
 • production level based on presumed DOD requirements

Scope

- range of stockpile sizes
 • START I to "small START III" (active-only)
- pit fabrication operations modeled in detail (Pu components only)
 • Extend software package
 • production operations only (no added capacity for R&D)
 • variety of single shift and two shift production levels
 • detailed equipment lists, but no detailed floor layouts developed
- "balance of plant" activities not independently studied
 • "balance of plant" defined as non-nuclear costing, analytical chemistry, Pu processing, storage, and waste handling
 • no balance of plant activities housed within fabrication facility
 • SRS aqueous-based Pu processing technology assumed for convenience
- "Brownfield" site
 • all estimates assumed at least some degree of pre-existing site infrastructure (roads, utilities, and the like)
- D&D costs not considered
- supplemental PEIS not costed
Level of Redundancy

- byproduct of Extend modeling
 - workstations added as needed until predetermined production rate was achieved with acceptable equipment utilization (set at maximum of 70%) at every station
 - each piece of identical equipment assumed to be utilized equally
 - detailed lists of required equipment for various 1- and 2-shift production rates were developed
- single production line
- single material transfer system
 - realistic transfer times embedded in modeling
- single pit design in production at any one time
 - team opinion is that two at a time would be possible by going to 2 shifts, but at the price of reduced efficiency (say, down to ~80%) for both

Level of Detail

- below pre-CDR scope and quality
 - costing built on foundation of prior estimates
 - some topics not re-examined
 - staffing levels, salary structures
 - important topics left unaddressed
 - workforce acquisition and training
 - NEPA issues
 - exposure limits
- expansive in number of topical areas considered
 - pit yield lifetime
 - implementation timeline
 - stockpile size
 - facility modeling
 - siting
 - costing
Potential Timeline

- Barring a national emergency, Δt = 14 years from start of preconceptual design until start of full production

Pit Fabrication Facility*

- Base Case
 - big enough to allow elimination of inactive stockpile
 - 450 WR-pits/yr 2-shift capacity
 - single shift capacity falls at ~225 WR-pits/yr
 - ~81,000 sq. ft. hardened (Cat I) space
 - ~19,000 sq. ft. of this is actual manufacturing space
 - foundry
 - machining
 - welding & assembly
 - final assembly (including radiography)
 - ~62,000 sq. ft. soft space
- Single shift capacity of 150 WR-pits/yr
 - only ~10% smaller than base case overall
 - ~71,000 sq. ft. hardened (Cat I) space
 - ~16,000 sq. ft. for actual manufacturing
 - ~58,000 sq. ft. soft space

*No balance of plant activities included
Cost to Implement Total Base Case Plant*

- **Lower Bound**
 - Virtually all of the balance of plant infrastructure required to support a new base case pit fabrication facility is pre-existing at the chosen site, and is readily available and adaptable to the pit manufacturing mission.

- **More Realistic**
 - A greater percentage of the balance of plant must be capitalized, which includes not only pit fabrication, but plutonium processing, analytical chemistry, and some of the other supporting infrastructure as well.

- **Upper Bound**
 - A Greenfield alternative - NOT DONE
 * would include provision for a new waste handling facility - reasonable estimate of capital cost not obtainable until completion of NEPA process

*All balance of plant included

Base Case Plant - Constant FY00$ (1)

Through Title I design: $200M

TPC: $1.4B

Through Q&PPI/Ramp-up: $1.5B

= $2.0B (then-yr $ at 3%/yr inflation)

$M

<table>
<thead>
<tr>
<th>Year</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title I design</td>
<td></td>
</tr>
<tr>
<td>Completion of Q&PPI and Production Ramp-up</td>
<td></td>
</tr>
</tbody>
</table>

Start of Pre-Conceptual Design | TPC = costs through Start-up/ORR
Sensitivity of Results

- base case plant has sufficient capacity to support a wide range of potential future stockpiles, and pit lifetimes anywhere within current planning windows
- cost for in-place contingency capacity (included in base case plant) is small (on the order of ~10% of the total)
- if the start of production is delayed, the required plant capacity is increased because the date for pit EOL is fixed
 - five year delay could impact required baseline production rate by ~20% or more (depending on size of stockpile supported)
Study Attributes

- Breadth of Treatment
 - includes references to political risks
- No Externally Imposed Constraints
- A Continuum of Results
 - not a point solution, therefore, shows interrelationships between important parameters and sensitivities
 - conveys a thought process to assist decision makers
- Illumination of Concepts
 - dramatic economic benefit of not supporting an inactive stockpile
 - modest up-front capital investment in base-case capacity would allow savings of many billions in future production campaign costs
 - savings somewhat reduced if future augmentation and/or reliability replacement production needed
 - "lower bound" study approach helps defensibility of this conclusion
 - no IS would make needed plant capacity driven most strongly by stockpile size, not pit lifetimes
 - need for contingency capacity would be the driver
 - Category I space as a Complex-wide resource